Elimination of Resonances in Codimension One Foliations
نویسنده
چکیده
The problem of reduction of singularities for germs of codimension one foliations in dimension three has been solved by Cano in [3]. The author divides the proof in two steps. The first one consists in getting pre-simple points and the second one is the passage from pre-simple to simple points. In arbitrary dimension of the ambient space the problem is open. In this paper we solve the second step of the problem. 2010 Mathematics Subject Classification: 32S45, 32S65, 37F75.
منابع مشابه
Lie Algebras of Vector Fields and Codimension One Foliations
LIE ALGEBRAS OF VECTOR FIELDS AND CODIMENSION ONE FOLIATIONS
متن کاملOn holomorphic foliations with projective transverse structure
We study codimension one holomorphic foliations on complex projective spaces and compact manifolds under the assumption that the foliation has a projective transverse structure in the complement of some invariant codimension one analytic subset. The basic motivation is the characterization of pull-backs of Riccati foliations on projective spaces. Our techniques apply to give a description of th...
متن کاملOn the Dynamics of Codimension One Holomorphic Foliations with Ample Normal Bundle
We investigate the accumulation to singular points of leaves of codimension one foliations whose normal bundle is ample, with emphasis on the nonexistence of Levi-flat hypersurfaces.
متن کاملFoliations with few non-compact leaves
Let F be a foliation of codimension 2 on a compact manifold with at least one non-compact leaf. We show that then F must contain uncountably many non-compact leaves. We prove the same statement for oriented p-dimensional foliations of arbitrary codimension if there exists a closed p form which evaluates positively on every compact leaf. For foliations of codimension 1 on compact manifolds it is...
متن کاملThe Diffeomorphism Group of a Lie Foliation
We explicitly compute the diffeomorphism group of several types of linear foliations (with dense leaves) on the torus T, n ≥ 2, namely codimension one foliations, flows, and the so-called nonquadratic foliations. We show in particular that non-quadratic foliations are rigid, in the sense that they do not admit transverse diffeomorphisms other than ±id and translations. The computation is an app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014